我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:彩63彩票 > 多面体模型 >

高中数学六类大题方法技巧解析

归档日期:07-07       文本归类:多面体模型      文章编辑:爱尚语录

  想要学好数学,在高考中取得好成绩,就一定要抓题型,尤其是重点大题。以下根据近几年高考数学大题类型分析,总结出了6类大题的方法技巧,抓住这六道题,也就抓住了数学的命脉。

  1.注意归一公式、诱导公式的正确性【转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!】。

  2.根据函数解析式研究函数图像和性质,解决此类题型的关键在于三角函数的化简与求最值。

  3.观察角、函数运算间的差异,即进行所谓的“差异分析”; 运用相关公式,找出差异之间的内在联系;选择恰当的公式,促使差异的转化。

  1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

  2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法,用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

  3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

  2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

  3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

  4.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素之间的关系,列方程(组)求解。

  5.三视图中“长对正,高平齐,宽相等”,即“正俯一样长,正侧一样高,俯侧一样宽”,因此可以根据三视图的形状及相关数据确定原几何体的各个度量。

  7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

  五、圆锥曲线.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

  1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

本文链接:http://ashtonstewart.net/duomiantimoxing/643.html